4.8 Article

High-rate quantum key distribution exceeding 110 Mb s-1

Journal

NATURE PHOTONICS
Volume 17, Issue 5, Pages 416-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41566-023-01166-4

Keywords

-

Ask authors/readers for more resources

This article reports a QKD system that can generate keys at a record high rate of 115.8 Mb/s over a 10 km standard optical fiber and distribute keys over up to 328 km of ultralow-loss fiber. These abilities are attributed to a multipixel superconducting nanowire single-photon detector with an ultrahigh counting rate, an integrated transmitter that can stably encode polarization states with low error, a fast post-processing algorithm for generating keys in real time, and the high system clock rate operation. The results demonstrate the feasibility of practical high-rate QKD with photonic techniques, thus opening its possibility for widespread applications.
Quantum key distribution (QKD) can provide fundamentally proven secure communication. Towards application, the secret key rate (SKR) is a key figure of merit for any QKD system. The SKR has so far been limited to about a few megabits per second. Here we report a QKD system that is able to generate keys at a record high SKR of 115.8 Mb s(-1) over a 10 km standard optical fibre, and distribute keys over up to 328 km of ultralow-loss fibre. Such abilities are attributed to a multipixel superconducting nanowire single-photon detector with an ultrahigh counting rate, an integrated transmitter that can stably encode polarization states with low error, a fast post-processing algorithm for generating keys in real time and the high system clock rate operation. The results demonstrate the feasibility of practical high-rate QKD with photonic techniques, thus opening its possibility for widespread applications. A quantum key distribution with a key rate of 115.8 Mb s(-1) is demonstrated over 10 km standard optical fibre. To this end, a high-speed and stable system, an integrated transmitter for low error modulation and multipixel superconducting nanowire single-photon detectors are developed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available