4.8 Article

Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production

Journal

NATURE NANOTECHNOLOGY
Volume 18, Issue 7, Pages 754-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41565-023-01385-4

Keywords

-

Ask authors/readers for more resources

A floatable photocatalytic platform consisting of porous elastomer-hydrogel nanocomposites is designed to address the challenges of solar energy and mass transfer, catalyst instability, and reverse reactions. It achieves efficient hydrogen evolution and demonstrates potential for commercialization in seawater and highly turbid water.
Storing solar energy in chemical bonds aided by heterogeneous photocatalysis is desirable for sustainable energy conversion. Despite recent progress in designing highly active photocatalysts, inefficient solar energy and mass transfer, the instability of catalysts and reverse reactions impede their practical large-scale applications. Here we tackle these challenges by designing a floatable photocatalytic platform constructed from porous elastomer-hydrogel nanocomposites. The nanocomposites at the air-water interface feature efficient light delivery, facile supply of water and instantaneous gas separation. Consequently, a high hydrogen evolution rate of 163 mmol h(-1) m(-2) can be achieved using Pt/TiO2 cryoaerogel, even without forced convection. When fabricated in an area of 1 m(2) and incorporated with economically feasible single-atom Cu/TiO2 photocatalysts, the nanocomposites produce 79.2 ml of hydrogen per day under natural sunlight. Furthermore, long-term stable hydrogen production in seawater and highly turbid water and photoreforming of polyethylene terephthalate demonstrate the potential of the nanocomposites as a commercially viable photocatalytic system. Floatable hydrogel nanocomposites, with facile intercalation of various photocatalysts, effectively produce hydrogen. The easily scalable nature of the nanocomposites demonstrates the practical application of this new type of photocatalytic platform.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available