4.8 Article

Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography

Journal

NANO RESEARCH
Volume -, Issue -, Pages -

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-023-5687-x

Keywords

magnetic metal-carbon binary composition; morphology control; dielectric loss; magnetic loss; electromagnetic wave absorption

Ask authors/readers for more resources

Six different morphologies of N-Ni/C nanostructures were prepared by one-step hydrothermal method and high temperature carbonization by adjusting the types of nickel salts and reaction solvents. The electromagnetic wave absorption performance of these nanostructures was compared and analyzed. Among them, the nanoflower-like N-Ni/C composite exhibited excellent dielectric loss and magnetic loss synergistic effect, leading to superior electromagnetic wave absorption properties. The minimum reflection loss value at a thickness of 1.9 mm was -59.56 dB at 16.88 GHz, and the effective absorption bandwidth value reached 6.0 GHz at a thickness of 2.2 mm. The research findings highlight the significant influence of different morphologies and multiple lattice structures on electromagnetic wave absorption performance, providing new research ideas for the development of high-performance absorbing materials.
To achieve excellent electromagnetic wave (EMW) absorption properties, the microstructure design of the absorber is critical. In this work, six kinds of N-Ni/C nanostructures with different morphologies were prepared by one-step hydrothermal method and high temperature carbonization by adjusting the types of nickel salts and reaction solvents. The EMW absorption performance of six different morphologies of N-Ni/C nanostructures was compared and analyzed. Among them, it is found that the nanoflower-like N-Ni/C composite has excellent dielectric loss and magnetic loss synergistic effect due to its polycrystalline structure, and can obtain excellent EMW absorption performance. The minimum reflection loss value at a thickness of 1.9 mm is -59.56 dB at 16.88 GHz, and the effective absorption bandwidth value reaches 6.0 GHz at a thickness of 2.2 mm. Our research shows that different morphologies and multiple lattice structures of nanostructures with the same composition have a significant influence on EMW absorption performance, which provides new research ideas for developing high-performance EMW absorbing materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available