4.8 Article

Manipulation of the Topological Ferromagnetic State in a Weyl Semimetal by Spin-Orbit Torque

Journal

NANO LETTERS
Volume 23, Issue 8, Pages 3394-3400

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.3c00410

Keywords

Magnetic Weyl semimetal; Heusler alloys; topology manipulation; spin-orbit torque; current-induced magnetization switching

Ask authors/readers for more resources

Magnetic Weyl semimetals (MWSMs) have unconventional transport phenomena and can be electrically manipulated by spin-orbit torque (SOT). High-quality Co2MnGa film is confirmed to have MWSM state, and its magnetization and topology can be controlled electrically. Current-induced SOT switches the topological magnetic state of Co2MnGa in both 180-degree and 90-degree manners. This work opens up more possibilities for spintronic applications based on topological materials.
Magnetic Weyl semimetals (MWSMs) exhibit unconventional transport phenomena, such as large anomalous Hall (and Nernst) effects, which are absent in spatial inversion asymmetry WSMs. Compared with its nonmagnetic counterpart, the magnetic state of a MWSM provides an alternative way for the modulation of topology. Spin-orbit torque (SOT), as an effective means of electrically controlling the magnetic states of ferromagnets, may be used to manipulate the topological magnetic states of MWSMs. Here we confirm the MWSM state of high-quality Co2MnGa film by systematically investigating the transport measurements and demonstrating that the magnetization and topology of Co2MnGa can be electrically manipulated. The electrical and magnetic optical measurements further reveal that the current-induced SOT switches the topological magnetic state in a 180-degree manner by applying positive/negative current pulses and in a 90-degree manner by alternately applying two orthogonal current pulses. This work opens up more opportunities for spintronic applications based on topological materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available