4.7 Article

Studying the warm hot intergalactic medium in emission: a reprise

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 523, Issue 2, Pages 2263-2282

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stad1495

Keywords

methods: numerical; galaxies: evolution; intergalactic medium; large-scale structure of Universe; cosmology: theory

Ask authors/readers for more resources

In this study, we use simulations to model the surface brightness maps of OVII and OVIII ion lines and compute summary statistics to infer the properties of the warm-hot intergalactic medium (WHIM). Our findings confirm that detectable WHIM emission is primarily associated with galaxy haloes, and the WHIM properties show minimal evolution over time. By exploring different parameters, we investigate the sensitivity of WHIM properties to cosmology and energy feedback mechanisms. Additionally, we provide forecasts for WHIM observations using a spectrometer similar to X-IFU, anticipating the detection of multiple emission lines per pixel. Overall, our work demonstrates the potential of emission studies to probe the densest phase of the WHIM and shed light on its physical properties.
The warm-hot intergalactic medium (WHIM) contains a significant portion of the 'missing baryons'. Its detection in emission remains a challenge. Integral field spectrometers like X-IFU on board of the Athena satellite will secure WHIM detection in absorption and emission and, for the first time, allow us to investigate its physical properties. In our research, we use the CAMELS simulations to model the surface brightness maps of the OVII and OVIII ion lines and compute summary statistics like photon counts and 2-point correlation functions to infer the properties of the WHIM. Our findings confirm that detectable WHIM emission is primarily associated with galaxy haloes, and the properties of the WHIM show minimal evolution from z similar to 0.5 to the present time. By exploring a wide range of parameters within the CAMELS suite, we investigate the sensitivity of WHIM properties to cosmology and energy feedback mechanisms influenced by active galactic nuclei and stellar activity. This approach allows us to separate the cosmological aspects from the baryonic processes and place constraints on the latter. Additionally, we provide forecasts for WHIM observations using a spectrometer similar to X-IFU. We anticipate detecting 1-3 WHIM emission lines per pixel and mapping the WHIM emission profile around haloes up to a few tens of arcminutes, surpassing the typical size of a WHIM emitter. Overall, our work demonstrates the potential of emission studies to probe the densest phase of the WHIM, shedding light on its physical properties and offering insights into the cosmological and baryonic processes at play.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available