4.6 Article

R97 at Handlebar Binding Mode in Active Pocket Plays an Important Role in Fe(II)/α-Ketoglutaric Acid-Dependent Dioxygenase cis-P3H-Mediated Selective Synthesis of (2S,3R)-3-Hydroxypipecolic Acid

Journal

MOLECULES
Volume 28, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/molecules28041854

Keywords

L-pipecolic acid; dioxygenase; hydroxypipecolic acid; handlebar mode; site-directed saturation mutagenesis

Ask authors/readers for more resources

This study identified key residues for selective hydroxylation of L-Pip by cis-P3H through structural analysis and residue composition. Mutant R97M was found to enhance the catalytic efficiency by breaking the salt bridge and weakening the positive-positive interaction. This research provides a potential method for improving cis-P3H catalytic activity through rational protein engineering.
Pipecolic acid (Pip) and its derivative hydroxypipecolic acids, such as (2S,3R)-3-hydroxypipecolic acid (cis-3-L-HyPip), are components of many natural and synthetic bioactive molecules. Fe(II)/alpha-ketoglutaric acid (Fe(II)/2-OG)-dependent dioxygenases can catalyze the hydroxylation of pipecolic acid. However, the available enzymes with desired activity and selectivity are limited. Herein, we compare the possible candidates in the Fe(II)/2-OG-dependent dioxygenase family, and cis-P3H is selected for potentially catalyzing selective hydroxylation of L-Pip. cis-P3H was further engineered to increase its catalytic efficiency toward L-Pip. By analyzing the structural confirmation and residue composition in substrate-binding pocket, a handlebar mode of molecular interactions is proposed. Using molecular docking, virtual mutation analysis, and dynamic simulations, R97, E112, L57, and G282 were identified as the key residues for subsequent site-directed saturation mutagenesis of cis-P3H. Consequently, the variant R97M showed an increased catalytic efficiency toward L-Pip. In this study, the k(cat)/K-m value of the positive mutant R97M was about 1.83-fold that of the wild type. The mutation R97M would break the salt bridge between R97 and L-Pip and weaken the positive-positive interaction between R97 and R95. Therefore, the force on the amino and carboxyl groups of L-Pip was lightly balanced, allowing the molecule to be stabilized in the active pocket. These results provide a potential way of improving cis-P3H catalytic activity through rational protein engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available