4.6 Article

Experimental Validation of MHC Class I and II Peptide-Based Potential Vaccine Candidates for Human Papilloma Virus Using Sprague-Dawly Models

Journal

MOLECULES
Volume 28, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/molecules28041687

Keywords

HPV; epitope prediction; peptides vaccine; animal studies; immunoassays

Ask authors/readers for more resources

This study successfully predicted eight immunogenic peptides of CD4+ and CD8+ T-lymphocytes that induced immunogenic response to human papilloma virus (HPV). The findings support the feasibility of peptide-based vaccine development for HPV.
Human papilloma virus (HPV) causes cervical and many other cancers. Recent trend in vaccine design is shifted toward epitope-based developments that are more specific, safe, and easy to produce. In this study, we predicted eight immunogenic peptides of CD4+ and CD8+ T-lymphocytes (MHC class I and II as M1 and M2) including early proteins (E2 and E6), major (L1) and minor capsid protein (L2). Male and female Sprague Dawly rats in groups were immunized with each synthetic peptide. L1M1, L1M2, L2M1, and L2M2 induced significant immunogenic response compared to E2M1, E2M2, E6M1 and E6M2. We observed optimal titer of IgG antibodies (>1.25 g/L), interferon-gamma (>64 ng/L), and granzyme-B (>40 pg/mL) compared to control at second booster dose (240 mu g/500 mu L). The induction of peptide-specific IgG antibodies in immunized rats indicates the T-cell dependent B-lymphocyte activation. A substantial CD4+ and CD8+ cell count was observed at 240 mu g/500 mu L. In male and female rats, CD8+ cell count for L1 and L2 peptide is 3000 and 3118, and CD4+ is 3369 and 3484 respectively compared to control. In conclusion, we demonstrated that L1M1, L1M2, L2M1, L2M2 are likely to contain potential epitopes for induction of immune responses supporting the feasibility of peptide-based vaccine development for HPV.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available