4.6 Article

Ppb-Level Hydrogen Sulfide Gas Sensor Based on the Nanocomposite of MoS2 Octahedron/ZnO-Zn2SnO4 Nanoparticles

Journal

MOLECULES
Volume 28, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/molecules28073230

Keywords

ZnO-Zn2SnO4 nanoparticles; MoS2 octahedron; hydrothermal method; n-n junction; gas sensor; H2S

Ask authors/readers for more resources

In this study, a series of nanocomposites based on MoS2 octahedrons and ZnO-Zn2SnO4 nanoparticles were synthesized for detecting H2S gas at low temperatures. Among them, the gas sensor of MS-ZNO-5 showed the highest response to 2 ppm H2S and less response to other tested gases. The sensor also exhibited humble selectivity, good stability, promising reproducibility, rapid response/recovery times, low detection limit, and a linear relationship between H2S concentration and response.
Hydrogen sulfide (H2S) detection is extremely necessary due to its hazardous nature. Thus, the design of novel sensors to detect H2S gas at low temperatures is highly desirable. In this study, a series of nanocomposites based on MoS2 octahedrons and ZnO-Zn2SnO4 nanoparticles were synthesized through the hydrothermal method. Various characterizations such as X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectrum (XPS) have been used to verify the crystal phase, morphology and composition of synthesized nanocomposites. Three gas sensors based on the nanocomposites of pure ZnO-Zn2SnO4 (MS-ZNO-0), 5 wt% MoS2-ZnO-Zn2SnO4 (MS-ZNO-5) and 10 wt% MoS2-ZnO-Zn2SnO4 (MS-ZNO-10) were fabricated to check the gas sensing properties of various volatile organic compounds (VOCs). It showed that the gas sensor of (MS-ZNO-5) displayed the highest response of 4 to 2 ppm H2S and fewer responses to all other tested gases at 30 degrees C. The sensor of MS-ZNO-5 also displayed humble selectivity (1.6), good stability (35 days), promising reproducibility (5 cycles), rapid response/recovery times (10 s/6 s), a limit of detection (LOD) of 0.05 ppm H2S (R-a/R-g = 1.8) and an almost linear relationship between H2S concentration and response. Several elements such as the structure of MoS2, higher BET-specific surface area, n-n junction and improvement in oxygen species corresponded to improving response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available