4.6 Article

Novel Potential Janus Kinase Inhibitors with Therapeutic Prospects in Rheumatoid Arthritis Addressed by In Silico Studies

Journal

MOLECULES
Volume 28, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/molecules28124699

Keywords

rheumatoid arthritis; Janus kinase inhibitors; DMARDs; protein targets; molecular docking; virtual screening

Ask authors/readers for more resources

Rheumatoid arthritis (RA) is a severe autoimmune disease that affects millions of patients worldwide. Despite recent improvements, there are still unmet needs in the treatment of RA. In this study, in silico research was conducted to identify potential active molecules for the treatment of RA. The findings suggest that further research is needed to validate the efficacy and safety profiles of the most promising candidates.
Rheumatoid arthritis (RA) is a debilitating autoimmune disorder with an inflammatory condition targeting the joints that affects millions of patients worldwide. Several unmet needs still need to be addressed despite recent improvements in the management of RA. Although current RA therapies can diminish inflammation and alleviate symptoms, many patients remain unresponsive or experience flare-ups of their ailment. The present study aims to address these unmet needs through in silico research, with a focus on the identification of novel, potentially active molecules. Therefore, a molecular docking analysis has been conducted using AutoDockTools 1.5.7 on Janus kinase (JAK) inhibitors that are either approved for RA or in advanced phases of research. The binding affinities of these small molecules against JAK1, JAK2, and JAK3, which are target proteins implicated in the pathophysiology of RA, have been assessed. Subsequent to identifying the ligands with the highest affinity for these target proteins, a ligand-based virtual screening was performed utilizing SwissSimilarity, starting with the chemical structures of the previously identified small molecules. ZINC252492504 had the highest binding affinity (-9.0 kcal/mol) for JAK1, followed by ZINC72147089 (-8.6 kcal/mol) for JAK2, and ZINC72135158 (-8.6 kcal/mol) for JAK3. Using SwissADME, an in silico pharmacokinetic evaluation showed that oral administration of the three small molecules may be feasible. Based on the preliminary results of the present study, additional extensive research is required for the most promising candidates to be conducted so their efficacy and safety profiles can be thoroughly characterized, and they can become medium- and long-term pharmacotherapeutic solutions for the treatment of RA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available