4.6 Article

The Antileishmanial Activity of Eugenol Associated with Lipid Storage Reduction Rather Than Membrane Properties Alterations

Journal

MOLECULES
Volume 28, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/molecules28093871

Keywords

eugenol; Leishmania; mode of action; lipid droplets; acidocalcisomes; membrane permeability; membrane fluidity

Ask authors/readers for more resources

Leishmaniasis, a neglected tropical disease, still infects thousands of people per year worldwide. Resistance to major treatments has become a healthcare burden, especially in low-income countries. Eugenol, a phenylpropanoid, has shown antileishmanial activity against Leishmania mexicana mexicana (Lmm), but its mechanism of action is still unclear.
Leishmaniasis is a neglected tropical disease that still infects thousands of people per year throughout the world. The occurrence of resistance against major treatments for this disease causes a healthcare burden in low-income countries. Eugenol is a phenylpropanoid that has shown in vitro antileishmanial activity against Leishmania mexicana mexicana (Lmm) promastigotes with an IC50 of 2.72 mu g/mL and a high selectivity index. Its specific mechanism of action has yet to be studied. We prepared large unilamellar vesicles (LUVs), mimicking Lmm membranes, and observed that eugenol induced an increase in membrane permeability and a decrease in membrane fluidity at concentrations much higher than IC50. The effect of eugenol was similar to the current therapeutic antibiotic, amphotericin B, although the latter was effective at lower concentrations than eugenol. However, unlike amphotericin B, eugenol also affected the permeability of LUVs without sterol. Its effect on the membrane fluidity of Lmm showed that at high concentrations (>= 22.5 x IC50), eugenol increased membrane fluidity by 20-30%, while no effect was observed at lower concentrations. Furthermore, at concentrations below 10 x IC50, a decrease in metabolic activity associated with the maintenance of membrane integrity revealed a leishmaniostatic effect after 24 h of incubation with Lmm promastigotes. While acidocalcisomes distribution and abundance revealed by Trypanosoma brucei vacuolar H+ pyrophosphatase (TbVP1) immunolabeling was not modified by eugenol, a dose-dependent decrease of lipid droplets assessed by the Nile Red assay was observed. We hereby demonstrate that the antileishmanial activity of eugenol might not directly involve plasma membrane sterols such as ergosterol, but rather target the lipid storage of Lmm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available