4.7 Article

Plant DNA barcode library for native flowering plants in the arid region of northwestern China

Journal

MOLECULAR ECOLOGY RESOURCES
Volume 23, Issue 6, Pages 1389-1402

Publisher

WILEY
DOI: 10.1111/1755-0998.13797

Keywords

arid region; DNA barcodes; flowering plants; reference library; super-barcodes

Ask authors/readers for more resources

DNA barcoding is a useful tool for species identification and biodiversity monitoring. However, a comprehensive DNA barcode reference library is lacking for the arid region in northwestern China. This study developed and evaluated a large DNA barcode library for native flowering plants in this region.
DNA barcoding is a well-established tool for rapid species identification and biodiversity monitoring. A reliable and traceable DNA barcode reference library with extensive coverage is necessary but unavailable for many geographical regions. The arid region in northwestern China, a vast area of about 2.5 million km(2), is ecologically fragile and often overlooked in biodiversity studies. In particular, DNA barcode data from the arid region in China are lacking. We develop and evaluate the efficacy of an extensive DNA barcode library for native flowering plants in the arid region of northwestern China. Plant specimens were collected, identified and vouchered for this purpose. The database utilized four DNA barcode markers, namely rbcL, matK, ITS and ITS2, for 1816 accessions (representing 890 species from 385 genera and 72 families), and consisted of 5196 barcode sequences. Individual barcodes varied in resolution rates: species- and genus-level rates for rbcL, matK, ITS and ITS2 were 79.9%-51.1%/76.1%, 79.9%-67.2%/88.9%, 85.0%-72.0%/88.2% and 81.0%-67.4%/84.9%, respectively. The three-barcode combination of rbcL + matK + ITS (RMI) revealed a higher species- and genus-level resolution (75.5%/92.1%, respectively). A total of 110 plastomes were newly generated as super-barcodes to increase species resolution for seven species-rich genera, namely Astragalus, Caragana, Lactuca, Lappula, Lepidium, Silene and Zygophyllum. Plastomes revealed higher species resolution compared to standard DNA barcodes and their combination. We suggest future databases include super-barcodes, especially for species-rich and complex genera. The plant DNA barcode library in the current study provides a valuable resource for future biological investigations in the arid regions of China.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available