4.5 Article

BLEACH&STAIN 15-marker Multiplexed Imaging in 3,098 Human Carcinomas Reveals Six Major PD-L1-driven Immune Phenotypes with Distinct Spatial Orchestration

Journal

MOLECULAR CANCER RESEARCH
Volume 21, Issue 6, Pages 605-613

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-22-0593

Keywords

-

Ask authors/readers for more resources

Researchers have developed a BLEACH&STAIN mfIHC method that allows simultaneous analysis of 15 biomarkers in tumor samples. They have also found that PD-L1 expression is associated with immune cell infiltration and PD-1 expression on T cells. In breast cancer, the fluorescence intensity of PD-L1 on tumor cells has better predictive performance for overall survival compared to the percentage of PD-L1+ tumor cells.
Multiplex fluorescence IHC (mfIHC) approaches were yet either limited to six markers or limited to a small tissue size that hampers translational studies on large tissue microarray cohorts. Here we have developed a BLEACH&STAIN mfIHC method that enabled the simultaneous analysis of 15 biomarkers (PD-L1, PD-1, CTLA-4, panCK, CD68, CD163, CD11c, iNOS, CD3, CD8, CD4, FOXP3, CD20, Ki67, and CD31) in 3,098 tumor samples from 44 different carcinoma entities within one week. To facilitate automated immune checkpoint quantification on tumor and immune cells and study its spatial interplay an artificial intelligence-based frame-work incorporating 17 different deep-learning systems was estab-lished. Unsupervised clustering showed that the three PD-L1 phenotypes (PD-L1+ tumor and immune cells, PD-L1+ immune cells, PD-L1-) were either inflamed or noninflamed. In inflamed PD-L1+patients, spatial analysis revealed that an elevated level of intratumoral M2 macrophages as well as CD11c+ dendritic cell (DC) infiltration (P < 0.001 each) was associated with a high CD3+ CD4 +/- CD8 +/- FOXP3 +/- T-cell exclusion and a high PD-1 expression on T cells (P < 0.001 each). In breast cancer, the PD-L1 fluorescence intensity on tumor cells showed a significantly higher predictive performance for overall survival (OS; AUC, 0.72, P < 0.001) compared with the commonly used percentage of PD-L1+ tumor cells (AUC, 0.54). In conclusion, our deep-learning-based BLEACH&STAIN framework facilitates rapid and comprehensive assessment of more than 60 spatially orches-trated immune cell subpopulations and its prognostic relevance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available