4.7 Article

Multi-mode propagation and diffusion analysis using the three-dimensional second strain gradient elasticity

Journal

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
Volume 187, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2022.109970

Keywords

Wave finite element method; Second strain gradient theory; Wave propagation; Wave diffusion

Ask authors/readers for more resources

In this paper, a three-dimensional modeling of micro-sized structures is introduced using the second strain gradient theory. The constitutive relation is deduced and the weak formulations are calculated. The free wave propagation characteristics, dispersion relations, and forced responses of micro-sized structures are analyzed. The wave diffusion including reflection and transmission coefficients is illustrated through coupling conditions. The proposed approach shows significant potential for investigating the wave propagation and diffusion characteristics of micro-sized structures.
The multi-mode propagation and diffusion properties are crucial informations when studying complex waveguides. In this paper, firstly, the three-dimensional modeling of micro-sized structures is introduced by using the second strain gradient theory. The constitutive relation is deduced while the six quintic Hermite polynomial shape functions are employed for the displacement field. The weak formulations including element stiffness and mass matrices and the force vector are calculated through the Hamilton's principle and the global dynamic stiffness matrix of a unit cell is assembled. Then, free wave propagation characteristics are analyzed by solving eigenvalue problems within the direct wave finite element method framework. The dispersion relations of positive going waves considering the size effects are illustrated. Furthermore, the effects of higher order parameters on the dispersion curves are discussed and the forced responses with two boundary conditions are expounded. Eventually, the wave diffusion including reflection and transmission coefficients are illustrated through simple and complex coupling conditions, respectively. The dynamic analysis of coupled waveguides through the wave finite element method equipped with the second strain gradient is a novel work. The results show that the proposed approach is of significant potential for investigating the wave propagation and diffusion characteristics of micro-sized structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available