4.5 Article

A novel way to fabricate high elastic modulus and high strength of TiC reinforced aluminum matrix composite

Journal

MATERIALS AND MANUFACTURING PROCESSES
Volume 38, Issue 14, Pages 1785-1797

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10426914.2023.2217886

Keywords

Aluminum; alloys; composite; particles; deformation; forming; manufacturing; processes; strength

Ask authors/readers for more resources

This study investigates the microstructures and mechanical properties of Al matrix composites (AMCs) reinforced with titanium carbide (TiC) nanoparticles produced by accumulative roll bonding and cryorolling. The results show that the mechanical properties of Al/TiC AMCs improve with the increase of rolling cycles. The presence of TiC in the Al matrix contributes to the enhanced elastic modulus, hardness, yield, and ultimate tensile stress. The dispersion of TiC particles improves with more rolling cycles, resulting in decreased porosity and uniform distribution within the Al matrix, which ultimately enhances the mechanical properties.
This study presents an experimental investigation on Al matrix composites (AMCs) reinforced titanium carbide (TiC) nano-particles produced by five accumulative roll bonding cycles and three cryorolling (CR) cycles. The microstructures and mechanical properties of composites were studied. The results exhibited consequentially improved mechanical properties for processed Al/TiC AMCs as the number of rolling cycles increased. The presence of TiC in Al matrix showed the combination of elastic modulus, hardness, yield, and ultimate tensile stress of 84 +/- 2GPa, 86 +/- 3HV, 240 +/- 12MPa, and 308 +/- 15MPa, respectively. The dispersion of TiC particles was improved with increasing in the number of rolling cycles, resulting in a decrease in porosity between the matrix and reinforcement. This phenomenon was attributed to the breakup of particle clusters and their subsequent uniform dispersion within the Al matrix under CR. The composite microstructure shows uniform TiC particle distribution and grain refinement in the Al matrix, which all contribute to the enhanced mechanical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available