4.7 Article

The impacts of Persian Gulf water and ocean-atmosphere interactions on tropical cyclone intensification in the Arabian Sea

Journal

MARINE POLLUTION BULLETIN
Volume 188, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.marpolbul.2022.114553

Keywords

Tropical cyclone; Ocean-atmosphere interaction; Arabian Sea; SST; Eddy current; Natural hazard

Ask authors/readers for more resources

The number of tropical cyclone events in the Arabian Sea has dramatically increased in the last two decades, leading to severe human and economic damage in Oman, Iran, and Pakistan. Previous studies have primarily focused on atmospheric and sea surface temperature impacts on cyclone generation, while the role of oceanographic currents and ocean-atmospheric interactions are poorly understood. This study sheds new light on the relationship between atmospheric forcing, ocean currents, and cyclone intensification in the Arabian Sea. The findings highlight the increasing risk of intense cyclones and the need for international education programs to mitigate the impact.
During the last two decades, the number of tropical cyclone (TC) events in the Arabian Sea has increased dramatically. These events have led to severe human and economic damage in Oman, Iran and Pakistan. Within this context, Gonu, Phet and Shaheen were the Arabian Sea's most destructive TCs on record, leading to a total of 6.07 billion USD in damages and 159 fatalities. Previous studies have mainly focused on atmospheric, sea surface temperature (SST) and anthropogenic impacts of TC generation and intensification. By contrast, oceanographic currents, Persian Gulf water outflow and the role of ocean-atmospheric interactions on the distribution of outflow water into the Arabian Sea and their impacts on TC intensification, are poorly understood. In order to address this issue, we use historical TC records, satellite data, atmospheric and reanalyzed oceanographic data to shed new light on the relationship between large-scale atmospheric forcing and ocean currents on TC intensification in the Arabian Sea. The results demonstrate that pre-monsoon TCs mainly occurred during co-existing La Nin similar to a, cold Indian Ocean Basin Model (IOBM) and anomalous northern hemisphere circulations over the Persian Gulf. By contrast, post-monsoon TCs were generally generated during warming acceleration period. Poleward movement of the monsoon belt provided the required humidity and energy for TC generation and increased upwelling events. Water salinity and temperature have increased in the north and northwestern parts of the Arabian Sea following rising upwelling events and a decrease in Persian Gulf outflow water depth. Rapid TC intensification has increased noticeably since 2007 and >72 % of cyclones have reached category 3 or more. We find that the rate of SST rise in the Arabian Sea is higher than the other parts of the northern Indian Ocean since 1998. SST and salinity in the Arabian Sea have been controlled by Persian Gulf outflow water and oceanographic currents. TC intensity is controlled by warm and saline (>36.6 PSU) water distribution patterns, mediated by eddy and jet currents. Rapid intensification of pre-monsoon TCs occurred by tracking to the north and northwest, with most landfalls occurring during this period. Post-monsoon TCs generally affect the center and the southwest of the Arabian Sea. The risk of intensive TCs manifests an increasing trend since 2007, therefore education programs via international platforms such as the International Ocean Institute (IOI) and UNESCO are required for the countries most at risk.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available