4.7 Article

Modulation of Biophysical Cues in Nature Inspired Patterning of Porous Silk Fibroin Scaffold for Replenishable Controlled Drug Delivery

Journal

MACROMOLECULAR BIOSCIENCE
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mabi.202300119

Keywords

biomimetic patterning; controlled ampicillin release; deep cutaneous healing implant; fibroblast monolayer; hierarchical structure; replenishable drug delivery

Ask authors/readers for more resources

This paper reports the fabrication of a porous, biomimetically patterned silk fibroin scaffold loaded with ampicillin for controlled release of the drug. The scaffolds with hierarchical surface patterns showed lower swelling and degradation compared to other types of scaffolds. The patterned surface exhibited broad-spectrum antibacterial efficacy and demonstrated superior properties in terms of cell adhesion and expression of specific proteins compared to other variants.
While a sticking plasteris enough for healing of most of the minor cuts they may get routinely, critical situations like surgical, gunshot, accidental or diabetic wounds;lacarations and other cutaneous deep cuts may require implants and simultaneous medications for healing. From the biophysical standpoint, an internal force-based physical surface stimulusis crucial for cellular sensing during wound repair. In this paper, the authors report the fabrication of a porous, biomimmetically patterned silk fibroin scaffold loaded with ampicillin, which exhibits controlled release of the drug along with possible replenishment of the same. In vitro swelling study reveals that the scaffolds with hierarchical surface patterns exhibit lower swelling and degradation than other types of scaffolds. The scaffolds, that show remarkable broad-spectrum antibacterial efficacy, exhibit Korsemeyer-Peppas model for the ampicillin release patterns due to the structural hydrophobicity imparted by the patterns. Four distinct cell-matrix adhesion regimes are investigated for the fibroblasts to eventually form cell sheets all over the hierarchical surface structures. 4',6-diamidino-2-phenylindole (DAPI) and Fluorescein Diacetate (FDA) fluorescent staining clearly demonstrate the superiority of patterned surface over its other variants. A comparative immunofluorescence study among collagen I, vinculin, and vimentin expressions substantiated the patterned surface to be superior to others.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available