4.7 Article

Oxymatrine Loaded Cross-Linked PVA Nanofibrous Scaffold: Design and Characterization and Anticancer Properties

Journal

MACROMOLECULAR BIOSCIENCE
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mabi.202300098

Keywords

centrifugal spinning; colorectal cancer; drug delivery; nanofibers; oxymatrine

Ask authors/readers for more resources

This study focuses on the fabrication, characterization, and anticancer properties of biocompatible and biodegradable composite nanofibers consisting of PVA, OM, and CA. The effects of varying concentrations of OM and CA on fiber diameter and molecular cross-linking are investigated. The developed nanofiber-based mats are characterized using various analytical techniques and show potential as a drug delivery system in anticancer applications.
This study focuses on the fabrication, characterization and anticancer properties of biocompatible and biodegradable composite nanofibers consisting of poly(vinyl alcohol) (PVA), oxymatrine (OM), and citric acid (CA) using a facile and high-yield centrifugal spinning process known as Forcespinning. The effects of varying concentrations of OM and CA on fiber diameter and molecular cross-linking are investigated. The morphological and thermo-physical properties, as well as water absorption of the developed nanofiber-based mats are characterized using microscopical analysis, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. In vitro anticancer studies are conducted with HCT116 colorectal cancer cells. Results show a high yield of long fibers embedded with beads. Fiber average diameters range between 462 and 528 nm depending on OM concentration. The thermal analysis results show that the fibers are stable at room temperature. The anticancer study reveals that PVA nanofiber membrane with high concentrations of OM can suppress the proliferation of HCT116 colorectal cancer cells. The study provides a comprehensive investigation of OM embedded into nanosized PVA fibers and the prospective application of these membranes as a drug delivery system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available