4.7 Article

A Degradable Sustained-Release Drug Delivery System for Bleb-Forming Glaucoma Surgery

Journal

MACROMOLECULAR BIOSCIENCE
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mabi.202300075

Keywords

drug delivery system; fibrosis; glaucoma; glaucoma filtration surgery; mitomycin C

Ask authors/readers for more resources

Fibrosis of the filtering bleb is a common cause of failure in bleb-forming glaucoma surgery. This study investigates the use of a sustained-release drug delivery system (DDS) loaded with mitomycin C (MMC) to reduce fibrosis. Two different MMC-loaded DDSs are tested and compared to a control group. The results show that both DDSs release a significant amount of MMC and maintain functioning blebs, but the PLGA DDS exhibits less inflammation and more complete degradation compared to the PCL DDS.
Fibrosis of the filtering bleb is one of the main causes of failure after bleb-forming glaucoma surgery. Intraoperative application of mitomycin C (MMC) is the current gold standard to reduce the fibrotic response. However, MMC is cytotoxic and one-time application is often insufficient. A sustained-release drug delivery system (DDS), loaded with MMC, may be less cytotoxic and equally or more effective. Two degradable (polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA)) MMC-loaded DDSs are developed. Release kinetics are first assessed in vitro followed by rabbit implants in conjunction with the PRESERFLO MicroShunt. As a control, the MicroShunt is implanted with adjunctive use of a MMC solution. Rabbits are euthanized at postoperative day (POD) 28 and 90. The PLGA and PCL DDSs release (on average) 99% and 75% of MMC, respectively. All groups show functioning blebs until POD 90. Rabbits implanted with a DDS show more inflammation with avascular thin-walled blebs when compared to the control. However, collagen is more loosely arranged. The PLGA DDS shows less inflammation, less foreign body response (FBR), and more complete degradation at POD 90 when compared to the PCL DDS. Further optimization with regard to dosage is required to reduce side effects to the conjunctiva.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available