4.4 Article

Resolution analysis on light-field particle image velocimetry

Publisher

Optica Publishing Group
DOI: 10.1364/JOSAA.474866

Keywords

-

Categories

Ask authors/readers for more resources

This work presents a forward ray-tracing method based on Gaussian optics principles to determine the spatial resolution of optical field cameras in PIV. It also proposes a universal evaluation criterion suitable for all three LF-PIV configurations, providing guidance on configuring and selecting optical parameters in practical implementations.
With rapid developments in light-field particle image velocimetry (LF-PIV) based on single-camera, dual-camera, and dual-camera with Scheimpflug lenses, comprehensive quantitative analysis and careful evaluation of their theoretical spatial resolutions are essential to guide their practical applications. This work presents a framework for and better understanding of the theoretical resolution distribution of various optical field cameras with different amounts and different optical settings in PIV. Based on Gaussian optics principles, a forward ray-tracing method is applied to define the spatial resolution and provides the basis of a volumetric calculation method. Such a method requires a relatively low and acceptable computational cost, and can easily be applied in dual-camera/Scheimpflug LF-PIV configuration, which has hardly been calculated and discussed previously. By varying key optical parameters such as magnification, camera separation angle, and tilt angle, a series of volume depth resolution distributions is presented and discussed. By taking advantage of volume data distributions, a universal evaluation criterion based on statistics that is suitable for all three LF-PIV configurations is hereby proposed. With such a criterion, the pros and cons of the three configurations, as well as the effects of key optical parameters, can then be quantitatively illustrated and compared, thus providing useful guidance on the configuration and optical parameter selections in practical implementations of LF-PIV. (c) 2023 Optica Publishing Group

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available