4.6 Article

Onset Shift of Li Plating on Si/Graphite Anodes with Increasing Si Content

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 170, Issue 6, Pages -

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/acdda3

Keywords

-

Ask authors/readers for more resources

Mixing graphite with Si particles in Li-ion battery anodes increases the specific energy, and higher Si contents result in thinner anode coatings with constant areal capacity. This study systematically investigates the influence of Si content on the susceptibility of Li plating on Si/graphite anodes.
Mixing graphite with Si particles in anodes of Li-ion batteries provides increased specific energy. In addition, higher Si contents lead to thinner anode coatings at constant areal capacity. In the present study, we systematically investigated the influence of the Si content on the susceptibility of Li plating on Si/graphite anodes. Si/graphite anodes with Si contents from 0 to 20.8 wt% combined with NMC622 cathodes were manufactured on pilot-scale. After initial characterization in coin half cells and by SEM, pouch full cells with fixed N/P ratios were built. Rate capability at different temperatures, and Post-Mortem analysis were carried out. Results from voltage relaxation, Li stripping, SEM measurements, glow discharge optical emission spectroscopy (GD-OES) depth profiling, and optical microscopy were validated against each other. A decreasing susceptibility to Li plating with increasing Si content in the anodes could be clearly observed. A critical C-rate was defined, at which Li plating was detected for the first time. It was also found that at 0 degrees C the critical C-rate increases with increasing Si contents. At 23 degrees C the SOC at which Li dendrites were first observed on the anode also increased with higher Si content.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available