4.7 Article

The Genetic Determinants of Aortic Distention

Journal

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
Volume 81, Issue 14, Pages 1320-1335

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jacc.2023.01.044

Keywords

aorta; cardiovascular disease; deep learning; distensibility; genetics; strain

Ask authors/readers for more resources

Genetic determinants of aortic function influence the risk for stroke and coronary artery disease, and may lead to novel targets for medical intervention.
BACKGROUND As the largest conduit vessel, the aorta is responsible for the conversion of phasic systolic inflow from ventricular ejection into more continuous peripheral blood delivery. Systolic distention and diastolic recoil conserve energy and are enabled by the specialized composition of the aortic extracellular matrix. Aortic distensibility decreases with age and vascular disease. OBJECTIVES In this study, we sought to discover epidemiologic correlates and genetic determinants of aortic distensibility and strain. METHODS We trained a deep learning model to quantify thoracic aortic area throughout the cardiac cycle from cardiac magnetic resonance images and calculated aortic distensibility and strain in 42,342 UK Biobank participants. RESULTS Descending aortic distensibility was inversely associated with future incidence of cardiovascular diseases, such as stroke (HR: 0.59 per SD; P 1/4 0.00031). The heritabilities of aortic distensibility and strain were 22% to 25% and 30% to 33%, respectively. Common variant analyses identified 12 and 26 loci for ascending and 11 and 21 loci for descending aortic distensibility and strain, respectively. Of the newly identified loci, 22 were not significantly associated with thoracic aortic diameter. Nearby genes were involved in elastogenesis and atherosclerosis. Aortic strain and distensibility poly -genic scores had modest effect sizes for predicting cardiovascular outcomes (delaying or accelerating disease onset by 2%-18% per SD change in scores) and remained statistically significant predictors after accounting for aortic diameter polygenic scores. CONCLUSIONS Genetic determinants of aortic function influence risk for stroke and coronary artery disease and may lead to novel targets for medical intervention. (J Am Coll Cardiol 2023;81:1320-1335) (c) 2023 by the American College of Cardiology Foundation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available