4.8 Article

Cobalt-Promoted Noble-Metal Catalysts for Efficient Hydrogen Generation from Ammonia Borane Hydrolysis

Journal

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.3c00047

Keywords

-

Ask authors/readers for more resources

A step-by-step reduction strategy was developed to synthesize small-sized bimetallic species supported on various metal oxide supports. The introduction of Co species significantly enhanced the catalytic activity of noble metals (e.g., Pt, Rh, Ru, and Pd) in ammonia borane hydrolysis reactions. The optimized Pt0.1%Co3%/TiO2 catalyst showed a high turnover frequency (TOF) value and outperformed monometallic Pt/TiO2 and commercial Pt/C catalysts in terms of H2 generation rate and stability.
Ammonia borane (AB) has been regarded as a promising material for chemical hydrogen storage. However, the development of efficient, cost-effective, and stable catalysts for H2 generation from AB hydrolysis remains a bottleneck for realizing its practical application. Herein, a step-by-step reduction strategy has been developed to synthesize a series of bimetallic species with small sizes and high dispersions onto various metal oxide supports. Superior to other non-noble metal species, the introduction of Co species can remarkably and universally promote the catalytic activity of various noble metals (e.g., Pt, Rh, Ru, and Pd) in AB hydrolysis reactions. The optimized Pt0.1%Co3%/TiO2 catalyst exhibits a superhigh H2 generation rate from AB hydrolysis, showing a turnover frequency (TOF) value of 2250 molH2 molPt-1 min-1 at 298 K. Such a TOF value is about 10 and 15 times higher than that of the monometal Pt/TiO2 and commercial Pt/C catalysts, respectively. The density functional theory (DFT) calculation reveals that the synergy between Pt and CoO species can remarkably promote the chemisorption and dissociation of water molecules, accelerating the H2 evolution from AB hydrolysis. Significantly, the representative Pt0.25%Co3%/TiO2 catalyst exhibits excellent stability, achieving a record-high turnover number of up to 215,236 at room temperature. The excellent catalytic performance, superior stability, and low cost of the designed catalysts create new prospects for their practical application in chemical hydrogen storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available