4.8 Article

Tuning Geometric Chirality in Metallic and Hybrid Nanostructures by Controlled Nanoscale Crystal Symmetry Breaking

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 145, Issue 13, Pages 7495-7503

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.3c00503

Keywords

-

Ask authors/readers for more resources

Understanding and controlling chirality in inorganic crystalline materials at the nanoscale is crucial. A facile and general bottom-up synthetic strategy has been developed for achieving chiral plasmonic Au nanostructures with fine chirality control. These chiral nanostructures can be further employed as building blocks towards the formation of complex chiral nanostructures, allowing integration of chirality with other properties and functionalities.
Understanding and controlling chirality in inorganic crystalline materials at the nanoscale is crucial in elucidating fundamental chirality-dependent physical and chemical processes as well as advancing new technological prospects, but significant challenges remain due to the lack of material control. Here, we have developed a facile and general bottom-up synthetic strategy for achieving chiral plasmonic Au nanostructures, including nanocubes and nanorods with fine chirality control. The underlying chiral mechanism enabled by the chiral boundary morphology is substantiated by theoretical modeling and finite element method (FEM) simulation. Because of the robustness of induced handedness and their small size, these as-synthesized chiral nanostructures can be further employed as building blocks toward the formation of complex chiral nanostructures. We have demonstrated a new class of chiral hybrid metal-semiconductor nanostructures that can allow integration of chirality with other properties and functionalities. All of these together have paved the way to engineer nanoscale inorganic chirality and thus study various emerging chirality-entangled effects with practical technological applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available