4.5 Article

Comparative facile methods for preparing graphene oxide-hydroxyapatite for bone tissue engineering

Journal

Publisher

WILEY
DOI: 10.1002/term.2119

Keywords

graphene oxide; sol-gel; hydroxyapatite; bone repair; human mesenchymal stem cells; biomineralization

Funding

  1. PNR-CNR Ageing Programme

Ask authors/readers for more resources

Motivated by the success of using graphene oxide (GO) as a nanofiller of composites, there is a drive to search for this new kind of carbon material as a bioactive component in ceramic materials. In the present study, biomineralized GO was prepared by two different approaches, represented by in situ sol-gel synthesis and biomimetic treatment. It was found that in the biocomposites obtained by the sol-gel approach, the spindle-like hydroxyapatite nanoparticles, with a diameter of ca. 5 +/- 0.37nm and a length of ca. 70 +/- 2.5nm, were presented randomly and strongly on the surface. The oxygen-containing functional groups, such as hydroxyl and carbonyl, present on the basal plane and edges of the GO sheets, play an important role in anchoring calcium ions, as demonstrated by FT-IR and TEM investigations. A different result was obtained for biocomposites after biomimetic treatment: an amorphous calcium phosphate on GO sheet was observed after 5days of treatment. These different approaches resulted in a diverse effect on the proliferation and differentiation of osteogenic mesenchymal stem cells. In fact, in biocomposites prepared by the sol-gel approach the expression of an early marker of osteogenic differentiation, ALP, increases with the amount of GO in the first days of cell culture. Meanwhile, biomimetic materials sustain cell viability and proliferation, even if the expression of alkaline phosphatase activity in a basal medium is delayed. These findings may provide new prospects for utilizing GO-based hydroxyapatite biocomposites in bone repair, bone augmentation and coating of biomedical implants and broaden the application of GO sheets in biological areas. Copyright (c) 2016 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available