4.5 Article

Magnetoelectric tuning of spin, valley, and layer-resolved anomalous Nernst effect in transition-metal dichalcogenides bilayers

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 35, Issue 28, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-648X/accc65

Keywords

magnetoelectric; spin; valleys; Nernst effect; transition-metal dichacogenides bilayers; time reversal symmetry; inversion symmetry

Ask authors/readers for more resources

The interplay between layer pseudospin, spin, and valley degrees of freedom in transition-metal dichalcogenide (TMD) bilayers with electric and exchange fields is studied, resulting in a spin-valley-layer polarized total anomalous Nernst coefficient. The control of spin, valley, and layer-resolved contributions in bilayer TMDs via electric field tuning is determined. This control of layer degree of freedom in bilayer TMDs magnetoelectrically has relevance for possible applications in spin/valley caloritronics.
The anomalous Nernst coefficient (ANC) for transition-metal dichalcogenide (TMD) bilayers is studied with a focus on the interplay between layer pseudospin, spin, and valley degrees of freedom when electric and exchange fields are present. Breaking the inversion and time reversal symmetries via respectively electric and exchange fields results for bilayer TMDs in a spin-valley-layer polarized total ANC. Conditions are determined for controlling the spin, valley, and layer-resolved contributions via electric field tuning. Our results demonstrate the control of layer degree of freedom in bilayer TMDs magnetoelectrically which is of relevance for possible applications in spin/valley caloritronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available