4.5 Article

AsiteDesign: a Semirational Algorithm for an Automated Enzyme Design

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 127, Issue 12, Pages 2661-2670

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.2c07091

Keywords

-

Ask authors/readers for more resources

With advances in protein structure predictions, structure-based enzyme engineering is becoming increasingly important. AsiteDesign is a Monte Carlo-based protocol for introducing new catalytic residues in a binding pocket. It was successfully tested in designing alternative catalytic triads and enhancing the hydrolysis of a bulky chiral substrate by Pseudomonas fluorescens esterase.
With advances in protein structure predictions, the number of available high-quality structures has increased dramatically. In light of these advances, structure-based enzyme engineering is expected to become increasingly important for optimizing biocatalysts for industrial processes. Here, we present AsiteDesign, a Monte Carlo-based protocol for structure-based engineering of active sites. AsiteDesign provides a framework for introducing new catalytic residues in a given binding pocket to either create a new catalytic activity or alter the existing one. AsiteDesign is implemented using pyRosetta and incorporates enhanced sampling techniques to efficiently explore the search space. The protocol was tested by designing an alternative catalytic triad in the active site of Pseudomonas fluorescens esterase (PFE). The designed variant was experimentally verified to be active, demonstrating that AsiteDesign can find alternative catalytic triads. Additionally, the AsiteDesign protocol was employed to enhance the hydrolysis of a bulky chiral substrate (1-phenyl-2-pentyl acetate) by PFE. The experimental verification of the designed variants demonstrated that F158L/F198A and F125A/F158L mutations increased the hydrolysis of 1-phenyl-2-pentyl acetate from 8.9 to 66.7 and 23.4%, respectively, and reversed the enantioselectivity of the enzyme from (R) to (S)-enantiopreference, with 32 and 55% enantiomeric excess (ee), respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available