4.7 Article

Nondestructive 3D pathology with analysis of nuclear features for prostate cancer risk assessment

Journal

JOURNAL OF PATHOLOGY
Volume 260, Issue 4, Pages 390-401

Publisher

WILEY
DOI: 10.1002/path.6090

Keywords

light-sheet microscopy; nondestructive 3D pathology; digital pathology; prostate cancer; 3D segmentation; prognosis

Ask authors/readers for more resources

Previous studies have shown that computational analysis of 2D histology images can improve prognostication of prostate cancer outcomes. This study expands on previous work by exploring the prognostic value of 3D shape-based nuclear features in prostate cancer. The results suggest that these features are associated with cancer aggressiveness and could be valuable for decision-support tools.
Prostate cancer treatment decisions rely heavily on subjective visual interpretation [assigning Gleason patterns or International Society of Urological Pathology (ISUP) grade groups] of limited numbers of two-dimensional (2D) histology sections. Under this paradigm, interobserver variance is high, with ISUP grades not correlating well with outcome for individual patients, and this contributes to the over- and undertreatment of patients. Recent studies have demonstrated improved prognostication of prostate cancer outcomes based on computational analyses of glands and nuclei within 2D whole slide images. Our group has also shown that the computational analysis of three-dimensional (3D) glandular features, extracted from 3D pathology datasets of whole intact biopsies, can allow for improved recurrence prediction compared to corresponding 2D features. Here we seek to expand on these prior studies by exploring the prognostic value of 3D shape-based nuclear features in prostate cancer (e.g. nuclear size, sphericity). 3D pathology datasets were generated using open-top light-sheet (OTLS) microscopy of 102 cancer-containing biopsies extracted ex vivo from the prostatectomy specimens of 46 patients. A deep learning-based workflow was developed for 3D nuclear segmentation within the glandular epithelium versus stromal regions of the biopsies. 3D shape-based nuclear features were extracted, and a nested cross-validation scheme was used to train a supervised machine classifier based on 5-year biochemical recurrence (BCR) outcomes. Nuclear features of the glandular epithelium were found to be more prognostic than stromal cell nuclear features (area under the ROC curve [AUC] = 0.72 versus 0.63). 3D shape-based nuclear features of the glandular epithelium were also more strongly associated with the risk of BCR than analogous 2D features (AUC = 0.72 versus 0.62). The results of this preliminary investigation suggest that 3D shape-based nuclear features are associated with prostate cancer aggressiveness and could be of value for the development of decision-support tools. (c) 2023 The Pathological Society of Great Britain and Ireland.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available