4.5 Article

Tibial bone strength is negatively affected by volumetric muscle loss injury to the adjacent muscle in male mice

Journal

JOURNAL OF ORTHOPAEDIC RESEARCH
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1002/jor.25643

Keywords

three-point bending; in vivo muscle function; traumatic muscle injury

Categories

Ask authors/readers for more resources

The objective of this study was to investigate the impact of contractile strength loss associated with volumetric muscle loss (VML) injuries on the adjacent tibial bone structure and function in male mice. The results showed that VML-injured limbs had significantly lower muscular strength and power, as well as reduced bone strength and altered bone structure. These changes in tibial bone were observed during the natural maturation phase between 12 and 20 weeks of age.
This study's objective was to investigate how contractile strength loss associated with a volumetric muscle loss (VML) injury affects the adjacent tibial bone structural and functional properties in male C57BL/6J mice. Mice were randomized into one of two experimental groups: VML-injured mice that were injured at age 12 weeks and aged to 20 weeks (8 weeks postinjury, VML) and 20-week-old age-matched uninjured mice (Uninjured-20). Tibial bone strength, mid-diaphysis cortical geometry, intrinsic material properties, and metaphyseal trabecular bone structure were assessed by three-point bending and microcomputed tomography (& mu;CT). The plantar flexor muscle group (gastrocnemius, soleus, plantaris) was analyzed for its functional capacities, that is, peak-isometric torque and peak-isokinetic power. VML-injured limbs had 25% less peak-isometric torque and 31% less peak-isokinetic power compared to those of Uninjured-20 mice (p < 0.001). Ultimate load, but not stiffness, was significantly less (10%) in tibias of VML-injured limbs compared to those from Uninjured-20 (p = 0.014). & mu;CT analyses showed cortical bone thickness was 6% less in tibias of VML-injured limbs compared to Uninjured-20 (p = 0.001). Importantly, tibial bone cross-section moment of inertia, the primary determinant of bone ultimate load, was 16% smaller in bones of VML-injured limbs compared to bones from Uninjured-20 (p = 0.046). Metaphyseal trabecular bone structure was also altered up to 23% in tibias of VML-injured limbs (p < 0.010). These changes in tibial bone structure and function after a VML injury occur during a natural maturation phase between the age of 12 and 20 weeks, as evidenced by Uninjured-20 mice having greater tibial bone size and strength compared to uninjured-aged 12-week mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available