4.7 Article

Diagnosing the benign paroxysmal positional vertigo via 1D and deep-learning composite model

Journal

JOURNAL OF NEUROLOGY
Volume 270, Issue 8, Pages 3800-3809

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00415-023-11662-w

Keywords

Artificial intelligence; Deep learning; Machine learning; Benign paroxysmal positional vertigo; Nystagmus

Ask authors/readers for more resources

This study designed deep learning models that can accurately detect and classify the subtype of Benign Paroxysmal Positional Vertigo (BPPV), enabling a quick and straightforward diagnosis of BPPV in clinical setting.
BackgroundBenign Paroxysmal Positional Vertigo (BPPV) is the leading cause of vertigo, and its characteristic nystagmus induced by positional maneuvers makes it a good model for Artificial Intelligence (AI) diagnosis. However, during the testing procedure, up to 10 min of indivisible long-range temporal correlation data are produced, making the AI-informed real-time diagnosing unlikely in clinical practice.MethodsA combined 1D and Deep-Learning (DL) composite model was proposed. Two separate cohorts were recruited, with one for model generation and the other for evaluation of model's real-world generalizability. Eight features, including two head traces and three eye traces and their corresponding slow phase velocity (SPV) value, were served as the inputs. Three candidate models were tested, and a sensitivity study was conducted to determine the saliently important features.ResultsThe study included 2671 patients in the training cohort and 703 in the test cohort. A hybrid DL model achieved a micro-area under the receiver operating curve (AUROC) of 0.982 (95% CI 0.965, 0.994) and macro-AUROC of 0.965 (95% CI 0.898, 0.999) for overall classification. The highest accuracy was observed for right posterior BPPV, with an AUROC of 0.991 (95% CI 0.972, 1.000), followed by left posterior BPPV, with an AUROC of 0.979 (95% CI 0.940, 0.998), the lowest AUROC was 0.928 (95% CI 0.878, 0.966) for lateral BPPV. The SPV was consistently identified as the most predictive feature in the models. If the model process is carried out 100 times for a 10-min data, one single running takes 0.79 +/- 0.06 s.ConclusionThis study designed DL models which can accurately detect and categorize the subtype of BPPV, enabling a quick and straightforward diagnosis of BPPV in clinical setting. The critical feature identified in the model helps expand our understanding of this disorder.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available