4.7 Article

Whole-brain diffusion tensor imaging predicts 6-month functional outcome in acute intracerebral haemorrhage

Journal

JOURNAL OF NEUROLOGY
Volume 270, Issue 5, Pages 2640-2648

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00415-023-11592-7

Keywords

Intracerebral haemorrhage; Outcome prediction; Fractional anisotropy; Mean diffusivity; ICH score; Whole-brain approach

Ask authors/readers for more resources

This study found that small vessel disease is the most common cause of spontaneous intracerebral hemorrhage and is associated with widespread microstructural brain tissue disruption, which can be quantified using diffusion tensor imaging metrics. The study found that whole-brain microstructural alterations are associated with functional outcome after intracerebral hemorrhage and have better predictive ability than existing hemorrhage scores.
IntroductionSmall vessel disease (SVD) causes most spontaneous intracerebral haemorrhage (ICH) and is associated with widespread microstructural brain tissue disruption, which can be quantified via diffusion tensor imaging (DTI) metrics: mean diffusivity (MD) and fractional anisotropy (FA). Little is known about the impact of whole-brain microstructural alterations after SVD-related ICH. We aimed to investigate: (1) association between whole-brain DTI metrics and functional outcome after ICH; and (2) predictive ability of these metrics compared to the pre-existing ICH score.MethodsSixty-eight patients (38.2% lobar) were retrospectively included. We assessed whole-brain DTI metrics (obtained within 5 days after ICH) in cortical and deep grey matter and white matter. We used univariable logistic regression to assess the associations between DTI and clinical-radiological variables and poor outcome (modified Rankin Scale > 2). We determined the optimal predictive variables (via LASSO estimation) in: model 1 (DTI variables only), model 2 (DTI plus non-DTI variables), model 3 (DTI plus ICH score). Optimism-adjusted C-statistics were calculated for each model and compared (likelihood ratio test) against the ICH score.ResultsDeep grey matter MD (OR 1.04 [95% CI 1.01-1.07], p = 0.010) and white matter MD (OR 1.11 [95% CI 1.01-1.23], p = 0.044) were associated (univariate analysis) with poor outcome. Discrimination values for model 1 (0.67 [95% CI 0.52-0.83]), model 2 (0.71 [95% CI 0.57-0.85) and model 3 (0.66 [95% CI 0.52-0.82]) were all significantly higher than the ICH score (0.62 [95% CI 0.49-0.75]).ConclusionOur exploratory study suggests that whole-brain microstructural disruption measured by DTI is associated with poor 6-month functional outcome after SVD-related ICH. Whole-brain DTI metrics performed better at predicting recovery than the existing ICH score.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available