4.7 Article

HSV-1 infection-induced herpetic neuralgia involves a CCL5/CCR5-mediated inflammation mechanism

Journal

JOURNAL OF MEDICAL VIROLOGY
Volume 95, Issue 4, Pages -

Publisher

WILEY
DOI: 10.1002/jmv.28718

Keywords

dorsal root ganglia; herpes simplex virus type-1; herpetic-related neuralgia; mechanical allodynia; neuropathic pain; spinal cord; thermal hyperalgesia

Categories

Ask authors/readers for more resources

Herpetic-related neuralgia (HN) caused by varicella-zoster virus (VZV) infection is a common neuropathic pain. The molecular mechanisms and therapeutic targets of HN are still unclear. This study used an HSV-1 infection-induced HN mouse model to identify differentially expressed genes (DEGs) and explored the signaling pathways and expression patterns of these DEGs. The results showed that HSV-1 infection led to allodynia and hyperalgesia in mice, upregulation of certain genes in DRG and spinal cord, activation of astrocytes and microglia, and dysregulation of immune response and cytokine-cytokine receptor interaction. Blocking CCR5 exhibited analgesic effects and suppressed the upregulation of inflammatory cytokines. CCR5 could be a potential therapeutic target for HSV-1 infection-induced HN.
Herpetic-related neuralgia (HN) caused by varicella-zoster virus (VZV) infection is one of the most typical and common neuropathic pain in the clinic. However, the potential mechanisms and therapeutic approaches for the prevention and treatment of HN are still unclear. This study aims to provide a comprehensive understanding of the molecular mechanisms and potential therapeutic targets of HN. We used an HSV-1 infection-induced HN mouse model and screened the differentially expressed genes (DEGs) in the DRG and spinal cord using an RNAseq technique. Moreover, bioinformatics methods were used to figure out the signaling pathways and expression regulation patterns of the DEGs enriched. In addition, quantitative real-time RT-PCR and western blot were carried out to further confirm the expression of DEGs. HSV-1 inoculation in mice resulted in mechanical allodynia, thermal hyperalgesia, and cold allodynia, following the infection of HSV-1 in both DRG and spinal cord. Besides, HSV-1 inoculation induced an up-regulation of ATF3, CGRP, and GAL in DRG and activation of astrocytes and microglia in the spinal cord. Moreover, 639 genes were upregulated, 249 genes were downregulated in DRG, whereas 534 genes were upregulated and 12 genes were downregulated in the spinal cord of mice 7 days after HSV-1 inoculation. GO and KEGG enrichment analysis suggested that immune responses and cytokine-cytokine receptor interaction are involved in DRG and spinal cord neurons in mice after HSV-1 infection. In addition, CCL5 and its receptor CCR5 were significantly upregulated in DRG and spinal cord upon HSV-1 infection in mice. And blockade of CCR5 exhibited a significant analgesic effect and suppressed the upregulation of inflammatory cytokines in DRG and spinal cord induced by HSV-1 infection in mice. HSV-1 infection-induced allodynia and hyperalgesia in mice through dysregulation of immune response and cytokine-cytokine receptor interaction mechanism. Blockade of CCR5 alleviated allodynia and hyperalgesia probably through the suppression of inflammatory cytokines. Therefore, CCR5 could be a therapeutic target for the alleviation of HSV-1 infection-induced HN.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available