4.7 Article

Metal mobility and bioaccessibility from cyanide leaching heaps in a historical mine site

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 448, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.130948

Keywords

Cyanide leaching; Hazardous wastes; Sulfide mining; Metal bioavailability

Ask authors/readers for more resources

This study evaluates the mobility and bioaccessibility of metal/loids in Fe-rich mine wastes resulting from historical cyanide leaching activities. The wastes demonstrate high reactivity upon rainfall contact, releasing high concentrations of iron, lead, and aluminum, as well as posing potential risks for aquatic life. Mineralogy plays a role in controlling the mobility and bioaccessibility of metal/loids, highlighting the need for restoration measures in historical mine sites.
Unlike acidic sulfide mine wastes, where metal/loid mobility and bioaccessibility has been widely studied, less attention has been paid to alkaline cyanide heap leaching wastes. Thus, the main goal of this study is to evaluate the mobility and bioaccessibility of metal/loids in Fe-rich (up to 55%) mine wastes resulting from historical cyanide leaching activities. Wastes are mainly composed of oxides/oxyhydroxides (i.e. goethite and hematite), oxyhydroxisulfates (i.e. jarosite), sulfates (i.e., gypsum, evaporitic sulfate salts), carbonates (i.e., calcite, siderite) and quartz, with noticeable concentrations of metal/loids (e.g., 1453-6943 mg/kg of As, 5216-15,672 mg/kg; of Pb, 308-1094 mg/kg of Sb, 181-1174 mg/kg of Cu, or 97-1517 mg/kg of Zn). The wastes displayed a high reactivity upon rainfall contact associated to the dissolution of secondary minerals such as carbonates, gypsum, and other sulfates, exceeding the threshold values for hazardous wastes in some heap levels for Se, Cu, Zn, As, and sulfate leading to potential significant risks for aquatic life. High concentrations of Fe, Pb, and Al were released during the simulation of digestive ingestion of waste particles, with average values of 4825 mg/kg of Fe, 1672 mg/kg of Pb, and 807 mg/kg of Al. Mineralogy may control the mobility and bioaccessibility of metal/loids under rainfall events. However, in the case of the bioaccessible fractions different associations may be observed: i) the dissolution of gypsum, jarosite and hematite would mainly release Fe, As, Pb, Cu, Se, Sb and Tl; ii) the dissolution of an un-identified mineral (e.g., aluminosilicate or Mn oxide) would lead to the release of Ni, Co, Al and Mn and iii) the acid attack of silicate materials and goethite would enhance the bioaccessibility of V and Cr. This study highlights the hazardousness of wastes from cyanide heap leaching, and the need to adopt restoration measures in historical mine sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available