4.7 Article

Transformation kinetics of exogenous nickel in a paddy soil during anoxic-oxic alteration: Roles of organic matter and iron oxides

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 452, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.131246

Keywords

Immobilization; Release; Fulvic acid complex; Iron reduction; Kinetic model

Ask authors/readers for more resources

This study investigates the transformation processes of nickel in paddy soils under anoxic and oxic conditions. The results show that under anoxic conditions, complexation with soil organic matter dominates nickel immobilization, while under oxic conditions, organic matter and Fe-Mn oxides contribute similarly to nickel release.
Nickel is generally released from flooded soils; however, the key Ni transformation processes in soils that are freshly contaminated by Ni2+ during anoxic-oxic alteration remain unclear. We developed a kinetic model to investigate the Ni transformation in paddy soils under anoxic and oxic conditions based on the results of the seven-step sequential extraction, determination of dissolved and soil organic matter, and surface site quantification, which provide the kinetic data of different Ni fractions, organic matter, and reactive sites for modeling. The dissolved, exchangeable, and specifically adsorbed Ni was gradually transferred to fulvic complex, humic complex, Fe-Mn oxide bound, and sulfide bound Ni after 40 d of anoxic incubation due to the increase in pH and soil surface sites, which were mainly induced by Fe(III) oxide reduction and soil organic matter release. The introduction of oxygen triggered a rapid release of Ni, which was ascribed to the decrease in pH and soil surface sites caused by Fe(II) oxidation and carbon re-immobilization. Kinetic modeling demonstrated that complexation with soil organic matter dominated Ni immobilization under anoxic conditions, while organic matter and Fe-Mn oxides contributed similarly to Ni release under oxic conditions, although the majority of Ni remained complexed with soil organic matter. These findings are important for the evaluation and prediction of Ni behavior in paddy soils with exogenous Ni during flooding-drainage practices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available