4.2 Article

Rhizobacteria helps to explain the enhanced efficiency of phytoextraction strengthened by Streptomyces pactum

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 125, Issue -, Pages 73-81

Publisher

SCIENCE PRESS
DOI: 10.1016/j.jes.2022.01.022

Keywords

Phytoextraction; Streptomyces pactum; Enzymatic activity; Microbial community

Ask authors/readers for more resources

This research evaluated the joint effects of Streptomyces pactum and inorganic and organic nutrients on the phytoextraction of cadmium and zinc by potherb mustard. It was found that the nutrients synergistically enhanced the plant biomass and metal uptake. The inoculation of Streptomyces pactum decreased the diversity of rhizosphere bacteria and led to changes in the dominant genus.
The ultimate purpose of phytoextraction is not only to remove heavy metals from soil but also to improve soil quality. Here, we evaluated how the joint effect of Streptomyces pactum (strain Act12) and inorganic (Hoagland's solution) and organic (humic acid and peat) nutrients affected the phytoextraction practice of cadmium (Cd) and zinc (Zn) by potherb mustard, and the microbial community composition within rhizosphere was also investigated. The results indicated that the nutrients exerted synergistically with Act12, all increasing the plant biomass and Cd/Zn uptakes. The inoculation of Act12 alone significantly increased dehydrogenase activity of rhizosphere soil ( P 0.05), while urease and alkaline phosphatase activities varied in different dosage of Act12. Combined application of microbial strain with nutrients increased enzymatic activities with the elevated dosage of Act12. 16S ribosomal RNA high-throughput sequencing analysis revealed that Act12 inoculation reduced the diversity of rhizosphere bacteria. The Act12 and nutrients did not change dominant phyla i.e., Proteobacteria, Bacteroidetes, Gemmatimonadetes, Actinobacteria and Acidobacteria, but their relative abundance differed among the treatments with: Peat Act12 > Humic acid > Hoagland's solution. Comparatively, Sphingomonas replaced Thiobacillus as dominant genus after Act12 application. The increase in the Sphingomonas and Flavisolibacter abundances under Act12 and nutrients treatments gave rise to growth-promoting effect on plant. Our results revealed the important role for rhizosphere microbiota in mediating soil biochemical traits and plant growth, and our approach charted a path toward the development of Act12 combined with soil nutrients to enhance soil quality and phytoextraction efficiency in Cd/Zn-contaminated soils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available