4.2 Article

Catalytic destruction of chlorobenzene over K-OMS-2: Inhibition of high toxic byproducts via phosphate modification

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 127, Issue -, Pages 844-854

Publisher

SCIENCE PRESS
DOI: 10.1016/j.jes.2022.08.011

Keywords

Catalytic destruction; Chlorinated organics; Phosphoric modification; K-OMS-2; Secondary pollution

Ask authors/readers for more resources

This study successfully improved the catalytic activity for the degradation of chlorinated organic compounds and reduced the generation of byproducts by modifying the catalyst with phosphate. The optimized modification condition was found to be the use of 1% phosphate, which achieved the best catalytic activity and byproduct inhibition.
In the process of catalytic destruction of chlorinated volatile organic compounds (CVOCs), the catalyst is prone to chlorine poisoning and produce polychlorinated byproducts with high toxicity and persistence, bringing great risk to atmospheric environment and human health. To solve these problems, this work applied phosphate to modify K-OMS-2 catalysts. The physicochemical properties of catalysts were determined by using X-ray powder diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), hydrogen temperature programmed reduction (H-2-TPR), pyridine adsorption Fourier-transform infrared (Py-IR) and water temperature programmed desorption (H2O-TPD), and chlorobenzene was selected as a model pollutant to explore the catalytic performance and byproduct inhibition function of phosphating. Experimental results revealed that 1 wt.% phosphate modification yielded the best catalytic activity for chlorobenzene destruction, with the 90% conversion (T-90) at approximately 247 degrees C. The phosphating significantly decreased the types and yields of polychlorinated byproducts in effluent. After phosphating, we observed significant hydroxyl groups on catalyst surface, and the active center was transformed into Mn(IV)-O horizontexpressionl ellipsis H, which promoted the formation of HCl, and enhanced the dechlorination process. Furthermore, the enriched Lewis acid sites by phosphating profoundly enhanced the deep oxidation ability of the catalyst, which promoted a rapid oxidation of reaction intermediates, so as to reduce byproducts generation. This study provided an effective strategy for inhibiting the toxic byproducts for the catalytic destruction of chlorinated organics. (C) 2022 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available