4.5 Article

Diversity within olfactory sensory derivatives revealed by the contribution of Dbx1 lineages

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 531, Issue 12, Pages 1229-1243

Publisher

WILEY
DOI: 10.1002/cne.25492

Keywords

-

Ask authors/readers for more resources

In vertebrates, the embryonic olfactory epithelium contains progenitors that will give rise to distinct classes of neurons. The homeodomain transcription factor Dbx1 is expressed by neurogenic progenitors in the developing and adult mouse olfactory epithelium. Dbx1-derived lineages contribute to diverse populations of olfactory sensory neurons, vomeronasal sensory neurons, and gonadotropin-releasing hormone neurons.
In vertebrates, the embryonic olfactory epithelium contains progenitors that will give rise to distinct classes of neurons, including olfactory sensory neurons (OSNs; involved in odor detection), vomeronasal sensory neurons (VSNs; responsible for pheromone sensing), and gonadotropin-releasing hormone (GnRH) neurons that control the hypothalamic-pituitary-gonadal axis. Currently, these three neuronal lineages are usually believed to emerge from uniform pools of progenitors. Here, we found that the homeodomain transcription factor Dbx1 is expressed by neurogenic progenitors in the developing and adult mouse olfactory epithelium. We demonstrate that Dbx1 itself is dispensable for neuronal fate specification and global organization of the olfactory sensory system. Using lineage tracing, we characterize the contribution of Dbx1 lineages to OSN, VSN, and GnRH neuron populations and reveal an unexpected degree of diversity. Furthermore, we demonstrate that Dbx1-expressing progenitors remain neurogenic in the absence of the proneural gene Ascl1. Our work therefore points to the existence of distinct neurogenic programs in Dbx1-derived and other olfactory lineages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available