4.7 Article

One-step synthesis of Enteromorpha graphene aerogel modified by hydrophilic polyethylene glycol achieving high evaporation efficiency and pollutant tolerance

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 633, Issue -, Pages 628-639

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2022.11.145

Keywords

Hydrophilic modification; Graphene aerogel; Photothermal evaporation; Pollution tolerance; Enteromorpha utilization

Ask authors/readers for more resources

This study aims to synthesize a self-floating composite graphene aerogel (GA) named PEGA for desalination using solar energy, and the experimental results showed that the modification of PEG improved the hydrophilic functional ability of PEGA, resulting in an increased evaporation rate and photothermal conversion efficiency.
Photothermal evaporation using solar energy is a sustainable way to produce fresh water from seawater. Aiming to explore functional materials as a solar-energized evaporator with enhanced evaporation rate and pollutant tolerance, this study was to synthesize a self-floating composite graphene aerogel (GA) doped with Enteromorpha and modified polyethylene glycol (PEG), named as PEGA using solar energy for desalination. Physio-chemical properties and evaporative mechanism of PEGA were experimentally investigated and analyzed with respect to molecular weight, PEG dosage, and ratio of Enteromorpha and graphene oxide. Experimental data revealed that the modification of PEG improved hydrophilic func-tional ability of PEGA, resulting in increasing the evaporation rate and photothermal conversion effi-ciency up to 2.55 kg/(m2.h) and 105.71 %, respectively. The ion removal rate of seawater exceeds 99.99 % via the PEGA conducted solar evaporation. Furthermore, PEGA possessed an excellent property of salinity emulsion pollution tolerance. Particularly, the evaporation rate of the PEG-modified biomass-based aerogel was 2.84 kg/(m2.h) in a 15 wt% NaCl solution (1 sun, 6 h) and 2.50 kg/(m2.h) at 1 h. The formation of hydrogen bonds between -OH of PEG and water molecules assist to conduct water along the graphene matrix to improve water evaporation. The cost of the graphene aerogel modified by Enteromorpha was reduced by 38.88 % less than the original graphene aerogel. The results from this study will greatly promote the application of graphene aerogel for desalination via solar evaporation.(c) 2022 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available