4.7 Article

Hierarchical Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Reduced graphene oxide/Polypyrrole hybrid electrode with excellent rate capability and cycling stability for fiber-shaped supercapacitor

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 636, Issue -, Pages 245-254

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2023.01.019

Keywords

Conducting polymer; Reduced graphene oxide; Fiber-shaped supercapacitor; Rate capability; Cycle stability

Ask authors/readers for more resources

A ternary PEDOT:PSS/rGO/PPy fiber electrode was constructed by chemical polymerization of pyrrole on a PG hybrid hydrogel fiber. The electrode shows high specific capacitance, fast charge/discharge rate, and long-term cycling stability, making it suitable for energy storage in wearable electronics.
Fiber-shaped supercapacitor (FSSC) is considered as a promising energy storage device for wearable elec-tronics due to its high power density and outstanding safety. However, it is still a great challenge to simultaneously achieve high specific capacitance especially at rapid charging/discharging rate and long-term cycling stability of fiber electrode in FSSC for practical application. Here, a ternary poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/reduced graphene oxide/polypyrrole (PEDOT:PSS/rGO/ PPy) fiber electrode was constructed by in situ chemical polymerization of pyrrole on hydrothermally-assembled and acid-treated PEDOT:PSS/rGO (PG) hybrid hydrogel fiber. In this case, the porous PG hybrid fiber framework possesses combined advantages of highly-conductive PEDOT and flexible two-dimensional (2D) small-sized rGO sheets, which provides large surface area for the deposition of high-pseudocapacitance PPy, multiscale electrons/ions transport channels for the efficient utilization of active sites, and buffering layers to accommodate the structure change during electrochemical process. Attributed to the synergy, as-obtained ternary fiber electrode presents ultrahigh volumetric/areal specific capacitance (389 F cm-3 at 1 A cm-3 or 983 mF cm-2 at 2.5 mA cm-2) and outstanding rate performance (56 %, 1-20 A cm-3). In addition, 80 % preservation of initial capacitance after 8000 cycles for the corre-sponding FSSC also illustrates its greatly improved cycle stability compared with 64 % of binary PEDOT: PSS/PPy based counterpart. Accordingly, here proposed strategy promises a new opportunity to develop high-activity and durable electrode materials with potential applications in supercapacitor and beyond.(c) 2023 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available