4.7 Article

Understanding Arctic Sea Ice Thickness Predictability by a Markov Model

Journal

JOURNAL OF CLIMATE
Volume 36, Issue 15, Pages 4879-4897

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-22-0525.1

Keywords

Arctic; Sea ice; Climate prediction; Ice thickness

Ask authors/readers for more resources

The study developed a linear Markov model for the seasonal prediction of sea ice thickness (SIT). The model performed better in the cold season and up to 12 months in advance in the Arctic basin. The model skill remained high even after removing trends and the upper-ocean heat content (OHC) was found to contribute more to SIT prediction skill than other variables.
The Arctic sea ice decline and associated change in maritime accessibility have created a pressing need for sea ice thickness (SIT) predictions. This study developed a linear Markov model for the seasonal prediction of model-assimilated SIT. It tested the performance of physically relevant predictors by a series of sensitivity tests. As measured by the anomaly correlation coefficient (ACC) and root-mean-square error (RMSE), the SIT prediction skill was evaluated in different Arctic regions and across all seasons. The results show that SIT prediction has better skill in the cold season than in the warm season. The model performs best in the Arctic basin up to 12 months in advance with ACCs of 0.7-0.8. Linear trend contributions to model skill increase with lead months. Although monthly SIT trends contribute largely to the model skill, the model remains skillful up to 2-month leads with ACCs of 0.6 for detrended SIT predictions in many Arctic regions. In addition, the Markov model's skill generally outperforms an anomaly persistence forecast even after all trends were removed. It also shows that, apart from SIT itself, upper-ocean heat content (OHC) generally contributes more to SIT prediction skill than other variables. Sea ice concentration (SIC) is a relatively less sensitive predictor for SIT prediction skill than OHC. Moreover, the Markov model can capture the melt-to-growth season reemergence of SIT predictability and does not show a spring predictability barrier, which has previously been observed in regional dynamical model forecasts of September sea ice area, suggesting that the Markov model is an effective tool for SIT seasonal predictions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available