4.7 Article

Polypyrrole modification on BiVO4 for photothermal-assisted photoelectrochemical water oxidation

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 158, Issue 9, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0130217

Keywords

-

Ask authors/readers for more resources

A polypyrrole (PPy) layer was coated on BiVO4 film to enhance carrier kinetics and improve the water oxidation property. The PPy layer elevated the temperature and acted as a charge transfer channel, leading to significantly improved performance.
The bismuth vanadate (BiVO4) photoanode receives extensive attention in photoelectrochemical (PEC) water splitting. However, the high charge recombination rate, low electronic conductivity, and sluggish electrode kinetics have inhibited the PEC performance. Increasing the reaction temperature for water oxidation is an effective way to enhance the carrier kinetics of BiVO4. Herein, a polypyrrole (PPy) layer was coated on the BiVO4 film. The PPy layer could harvest the near-infrared light to elevate the temperature of the BiVO4 photoelectrode and further improve charge separation and injection efficiencies. In addition, the conductive polymer PPy layer acted as an effective charge transfer channel to facilitate photogenerated holes moving from BiVO4 to the electrode/electrolyte interface. Therefore, PPy modification led to a significantly improved water oxidation property. After loading the cobalt-phosphate co-catalyst, the photocurrent density reached 3.64 mA cm(-2) at 1.23 V vs the reversible hydrogen electrode, corresponding to an incident photon-to-current conversion efficiency of 63% at 430 nm. This work provided an effective strategy for designing a photothermal material assisted photoelectrode for efficient water splitting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available