4.7 Article

Structural Insights into ATP-Sensitive Potassium Channel Mechanics: A Role of Intrinsically Disordered Regions

Ask authors/readers for more resources

Commonly used techniques cannot capture the structural reorganizations of disordered regions of proteins, making it difficult to assess their functions solely based on experiments. Using computational molecular dynamics simulation methods, we studied the Kir6.2/SUR1 potassium channel and identified the dynamics of its disordered regions and their possible functions. Our research confirmed the crucial role of certain fragments in mechanical signal transfer and ligand binding, advancing our understanding of this vital complex.
Commonly used techniques, such as CryoEM or X-ray, are not able to capture the structural reorganizations of disordered regions of proteins (IDR); therefore, it is difficult to assess their functions in proteins based exclusively on experiments. To fill this gap, we used computational molecular dynamics (MD) simulation methods to capture IDR dynamics and trace biological function-related interactions in the Kir6.2/SUR1 potassium channel. This ATP-sensitive octameric complex, one of the critical elements in the insulin secretion process in human pancreatic beta-cells, has four to five large, disordered fragments. Using unique MD simulations of the full Kir6.2/SUR1 channel complex, we present an in-depth analysis of the dynamics of the disordered regions and discuss the possible functions they could have in this system. Our MD results confirmed the crucial role of the N-terminus of the Kir6.2 fragment and the L0-loop of the SUR1 protein in the transfer of mechanical signals between domains that trigger insulin release. Moreover, we show that the presence of IDRs affects natural ligand binding. Our research takes us one step further toward understanding the action of this vital complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available