4.6 Article

Mitotic phosphorylation of Tau/MAPT modulates cell cycle progression in prostate cancer cells

Journal

Publisher

SPRINGER
DOI: 10.1007/s00432-023-04721-2

Keywords

Prostate cancer; Docetaxel; Cancer therapy; Mitosis; Cell cycle

Categories

Ask authors/readers for more resources

This study investigated the expression of phosphorylated Tau in prostate cancer cell lines and found that Tau protein is phosphorylated at residue Thr231 during the G2/M cell cycle phase. The phosphorylation status of Tau is controlled by cdk5 and PP2A, and can affect the resistance of cells to drug toxicity. Modulation of Tau phosphorylation may interfere with the progression of cells through the G2/M phase.
PurposeTau/MAPT (microtubule associated protein tau) protein is actively studied for the pathologic consequences of its aberrant proteostasis in central nervous system leading to neurodegenerative diseases. Besides its ability to generate insoluble toxic oligomers, Tau homeostasis has attracted attention for its involvement in the formation of the mitotic spindle. This evidence, in association with the description of Tau expression in extra-neuronal tissues, and mainly in cancer tissues, constitutes the rationale for a more in-depth investigation of Tau role also in neoplastic diseases.MethodsIn our study, we investigated the expression of phosphorylated Tau in prostate cancer cell lines with particular focus on the residue Thr231 present in microtubule binding domain.ResultsThe analysis of prostate cancer cells synchronized with nocodazole demonstrated that the expression of Tau protein phosphorylated at residue Thr231 is restricted to G2/M cell cycle phase. The phosphorylated form was unable to bind tubulin and it does not localize on mitotic spindle. As demonstrated by the use of specific inhibitors, the phosphorylation status of Tau is under the direct control of cdk5 and PP2A, while cdk1 activation was able to exert an indirect control. These mechanisms were also active in cells treated with docetaxel, where counteracting the expression of the dephosphorylated form, by kinase inhibition or protein silencing, determined resistance to drug toxicity.ConclusionsWe hypothesize that phosphorylation status of Tau is a key marker for G2/M phase in prostate cancer cells and that the forced modulation of Tau phosphorylation can interfere with the capacity of cell to efficiently progress through G2/M phase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available