4.6 Article

Distinct effects of two hearing loss-associated mutations in the sarcomeric myosin MYH7b

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 299, Issue 5, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jbc.2023.104631

Keywords

-

Ask authors/readers for more resources

For a long time, sarcomeric myosin heavy chain proteins were believed to only exist in striated muscles where they function as molecular motors. However, an evolutionarily ancient member of this myosin family, MYH7b, has been found in mammalian nonmuscle tissues and is linked to hereditary hearing loss. The functional effects of mutations in MYH7b were unknown until now. This study investigates the effects of two hearing loss-associated mutations on the motor activity, structural and assembly properties of MYH7b.
For decades, sarcomeric myosin heavy chain proteins were assumed to be restricted to striated muscle where they function as molecular motors that contract muscle. However, MYH7b, an evolutionarily ancient member of this myosin family, has been detected in mammalian nonmuscle tissues, and mutations in MYH7b are linked to hereditary hearing loss in compound heterozygous patients. These mutations are the first associated with hearing loss rather than a muscle pathology, and because there are no homologous mutations in other myosin isoforms, their functional effects were unknown. We generated recombinant human MYH7b harboring the D515N or R1651Q hearing loss-associated mutation and studied their effects on motor activity and structural and assembly properties, respectively. The D515N mutation had no effect on steady-state actin-activated ATPase rate or load-dependent detachment kinetics but increased actin sliding velocity because of an increased displacement during the myosin working stroke. Furthermore, we found that the D515N mutation caused an increase in the proportion of myosin heads that occupy the disordered-relaxed state, meaning more myosin heads are available to interact with actin. Although we found no impact of the R1651Q mutation on myosin rod secondary structure or solubility, we observed a striking aggregation phenotype when this mutation was introduced into nonmuscle cells. Our results function and structure. Together, these results provide the foundation for further study of a role for MYH7b outside the sarcomere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available