4.6 Article

Analytical integration of the heater and sensor 3? signals of anisotropic bulk materials and thin films

Journal

JOURNAL OF APPLIED PHYSICS
Volume 133, Issue 20, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0151725

Keywords

-

Ask authors/readers for more resources

This article derives and analytically integrates models for the heater and sensor 3? signals of the temperature field of anisotropic bulk materials and thin films. The integration is done using the Fourier transform and expressing the frequency dependence of temperature in terms of the modified Bessel and Struve functions. The exact integrated models are expected to facilitate the accurate determination of the thermal conductivity and thermal diffusivity of anisotropic materials through a wide spectrum of modulation frequencies and without time-consuming numerical integration.
We derive and analytically integrate the models for the heater and sensor 3? signals of the temperature field of anisotropic bulk materials and thin films. This integration is done by using the Fourier transform and expressing the frequency dependence of temperature in terms of the modified Bessel and Struve functions, which are well-implemented in major computation software. The effects of the radiative losses and interface thermal resistance are also evaluated for different frequency regimes. Further, by fitting the 3? model integrated over the heater and sensor widths to experimental data recorded up to 31 kHz, the thermal conductivity and thermal diffusivity of a quartz glass wafer are determined for temperatures ranging from 300 to 800 K. The obtained results show that the usual log-linear approximation can induce an uncertainty of about 5 % on the thermal conductivity values. The exact integrated models are thus expected to facilitate the accurate determination of the thermal conductivity and thermal diffusivity of anisotropic materials through a wide spectrum of modulation frequencies and without time-consuming numerical integration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available