4.7 Article

Effects of minerals (phyllosilicates and iron oxides) on the responses of aliphatic hydrocarbon containing kerogens (Type I and Type II) to analytical pyrolysis

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jaap.2023.105900

Keywords

Pyrolysis -GC -MS; Kerogen; Phyllosilicates; Iron oxides; Polyethylene

Ask authors/readers for more resources

Organic matter in sediments is mainly composed of kerogen, which can be classified into different types for paleoenvironmental and petroleum potential information. However, the presence of minerals in sediments can affect the chemical reactions of kerogen, leading to incorrect assignment of kerogen types and misleading interpretations.
Organic matter in sediments is dominated by kerogen, a high molecular weight geomacromolecule. Kerogen can be subdivided into Types I to IV that provide paleoenvironmental and petroleum potential information. Kerogen typing can be performed by several chemical methods including elemental analysis (H/C and O/C), FTIR and pyrolysis-gas chromatography techniques. However, kerogens occur naturally within mineral matrices and these can influence the chemical responses. We have examined the effects of a range of minerals (namely kaolinite, lizardite, ripidolite, illite, montmorillonite, haematite, goethite, limonite and magnetite) on the responses of kerogen to pyrolysis-gas chromatography-mass spectrometry. We used aliphatic hydrocarbon containing kerogen Types I and II from Carboniferous Midland Valley shales of Scotland and the Jurassic Oxford Clay of southern England, respectively, as well as a pure synthetic aliphatic polymer, polyethylene. We find that the aliphatic organic matter in Type I kerogens is transformed by interaction with minerals during pyrolysis to give a signal incorrectly suggesting more contributions from land plant-containing kerogens, such as a large number of aro-matic molecules. Pyrolysis with goethite, limonite and magnetite leads to almost complete destruction of the organic matter. Hence, the mineral composition of sedimentary rocks during pyrolysis should be considered when assigning kerogen types. Failure to consider the effects of minerals can lead to incorrect assignment of kerogen type and, therefore, erroneous interpretations of paleoenvironments and petroleum potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available