4.7 Article

Magnetoelectric, spectroscopic, optical and elastic properties of Co- doped BaTiO3 ceramics

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 946, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2023.169344

Keywords

BaTiO3; Co-doping; BaCoO3; Perovskite; Multiferroics

Ask authors/readers for more resources

In this paper, extensive studies on Co-doped BaTiO3 ceramics were reported, including full structural characterization of studied samples in a 20-450 K range. The results showed that Co-doped BaTiO3 exhibited superior dielectric properties compared to the parent compound, with reduced dielectric losses and stable dielectric permittivity near room temperature.
The BaTiO3 perovskite is widely used in the electronic technology due to its dielectric, piezoelectric and ferroelectric properties and is a well-known base for obtaining a promising multifunctional material. In this paper we report the extensive studies on the Co-doped BaTiO3 ceramics for the wide range cobalt content. Full structural characterization of studied samples in a 20-450 K range was provided. The results of research on spectroscopic, dielectric, electronic, optical, magnetic and elastic properties are presented. The superior dielectric properties to those exhibited by the parent compound have been found. Namely, the reduction of dielectric losses and stability of the dielectric permittivity in the vicinity of the room temperature are reported. Additionally, our research revealed: broadening of the dielectric anomalies related to the ferro-electric-paraelectric phase transition, shifting the Curie point towards lower temperatures, displacive mechanism of Curie phase transition with order-disorder contributions; maximum value of the real part of dielectric permittivity of about 5000 at Curie point for 0.05 wt% of Co-doping, value of the activation energy similar to 0.9 eV as the result of the migration of oxygen vacancies that are generated due to charge compensation, and the occurrence of magnetoelectric response. At last, the Co-doped BaTiO3 shows potential to use in non-linear optoelectronic devices, while no evidence of multiferroic properties, suggested in the literature, was found.(c) 2023 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available