4.7 Article

Mechanical behavior of bilayer Ti6Al4V composite under quasi-static and dynamic compression

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 962, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2023.171048

Keywords

Ti6Al4V; Bilayer composite; Dynamical behavior

Ask authors/readers for more resources

The bilayer structure and homogeneous structure of Ti6Al4V (TC4) alloy were fabricated using High energy ball milling (HEBM) and Fast Hot-Press Sintering (FHPS). The microstructure and micro-hardness evolution along the interface of the bilayer composite were investigated. The results showed that the bilayer F/S-TC4 composite exhibited improved strength compared to the traditional S-TC4 alloy.
Bilayer structure and homogeneous structure of Ti6Al4V (TC4) alloy were fabricated by High energy ball milling (HEBM) and Fast Hot-Press Sintering (FHPS). The flake TC4 (F-TC4) powders were obtained from spherical TC4 (S-TC4) powders by HEBM, and the bilayer F/S-TC4 composite was prepared from F-TC4 and S-TC4 powders. The microstructure and micro-hardness evolution along the interface of the bilayer composite were investigated. It was found that the hardness decreased gradually from the F-TC4 side to the S-TC4 side. Moreover, an obvious morphology difference in the interface was observed, typical Widmanstatten structure on the S-TC4 side while an equiaxed structure on the F-TC4 side. In addition, the mechanical properties of the alloy and composite with different structures were studied under quasi-static and dynamic compression. The results revealed that the bilayer F/S-TC4 composite showed great strength improvement with little plasticity sacrifice as compared to traditional S-TC4 alloy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available