4.7 Article

Clindamycin phosphate and bone morphogenetic protein-7 loaded combined nanoparticle-graft and nanoparticle-film formulations for alveolar bone regeneration-An in vitro and in vivo evaluation

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 636, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ijpharm.2023.122826

Keywords

Bone morphogenetic protein; Bone regeneration; Clindamycin phosphate; Graft; Nanoparticle; Polyelectrolyte complex film

Ask authors/readers for more resources

Common techniques for healing alveolar bone destruction have limitations, but sustained release of growth factors through a scaffold-based delivery system shows promise in dentistry. Combining antimicrobials with growth factors can guide host response and promote ideal regeneration. This study prepared and evaluated bone morphogenetic protein 7 (BMP-7) and clindamycin phosphate (CDP) loaded polymeric nanoparticles for accelerated hard tissue regeneration, and found that loading the nanoparticles into a film was more effective than loading them into a graft.
Commonly utilized techniques for healing alveolar bone destruction such as the use of growth factors, suffering from short half-life, application difficulties, and the ability to achieve bioactivity only in the presence of high doses of growth factor. The sustained release of growth factors through a scaffold-based delivery system offers a promising and innovative tool in dentistry. Furthermore, it is suggested to guide the host response by using antimicrobials together with growth factors to prevent recovery and achieve ideal regeneration. Herein, the aim was to prepare and an in vitro -in vivo evaluation of bone morphogenetic protein 7 (BMP-7) and clindamycin phosphate (CDP) loaded polymeric nanoparticles, and their loading into the alginate-chitosan polyelectrolyte complex film or alloplastic graft to accelerate hard tissue regeneration. PLGA nanoparticles containing CDP and BMP-7, separately or together, were prepared using the double emulsion solvent evaporation technique. Through in vitro assays, it was revealed that spherical particles were homogeneously distributed in the combination formulations, and sustained release could be achieved for >12 weeks with all formulations. Also, results from the micro-CT and histopathological analyses indicated that CDP and BMP-7 loaded nanoparticle-film formulations were more effective in treatment than the nanoparticle loaded grafts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available