4.7 Article

Heterogeneity of Amino Acid Profiles of Proneural and Mesenchymal Brain-Tumor Initiating Cells

Journal

Publisher

MDPI
DOI: 10.3390/ijms24043199

Keywords

glioma; metabolism; metformin; proneural and mesenchymal brain-tumor-initiating cells

Ask authors/readers for more resources

Metformin has inhibitory effects on brain tumor-initiating cells (BTICs), but its effectiveness in vivo remains unclear. It was found that BTICs of different molecular subtypes have distinct amino acid profiles, and metformin treatment can inhibit their growth in vitro.
Glioblastomas are highly malignant brain tumors that derive from brain-tumor-initiating cells (BTICs) and can be subdivided into several molecular subtypes. Metformin is an antidiabetic drug currently under investigation as a potential antineoplastic agent. The effects of metformin on glucose metabolism have been extensively studied, but there are only few data on amino acid metabolism. We investigated the basic amino acid profiles of proneural and mesenchymal BTICs to explore a potential distinct utilization and biosynthesis in these subgroups. We further measured extracellular amino acid concentrations of different BTICs at baseline and after treatment with metformin. Effects of metformin on apoptosis and autophagy were determined using Western Blot, annexin V/7-AAD FACS-analyses and a vector containing the human LC3B gene fused to green fluorescent protein. The effects of metformin on BTICs were challenged in an orthotopic BTIC model. The investigated proneural BTICs showed increased activity of the serine and glycine pathway, whereas mesenchymal BTICs in our study preferably metabolized aspartate and glutamate. Metformin treatment led to increased autophagy and strong inhibition of carbon flux from glucose to amino acids in all subtypes. However, oral treatment with metformin at tolerable doses did not significantly inhibit tumor growth in vivo. In conclusion, we found distinct amino acid profiles of proneural and mesenchymal BTICs, and inhibitory effects of metformin on BTICs in vitro. However, further studies are warranted to better understand potential resistance mechanisms against metformin in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available