4.7 Article

dCas9-BE3 and dCas12a-BE3 Systems Mediated Base Editing in Kiwifruit Canker Causal Agent Pseudomonas syringae pv. actinidiae

Journal

Publisher

MDPI
DOI: 10.3390/ijms24054597

Keywords

Pseudomonas syringae pv; actinidiae; base editing; dCas9-BE3; dCas12a-BE3; multi-site knockout; mutant library

Ask authors/readers for more resources

Little is known about the pathogenic genes of Pseudomonas syringae pv. actinidiae (Psa), the bacteria that cause bacterial canker of kiwifruit. This study successfully utilized the dCas9-BE3 and dCas12a-BE3 systems to perform gene editing in Psa, including single nucleotide substitutions and conversion of codons. Additionally, a highly efficient gene knockout system was developed, which can knockout multiple genes simultaneously in the Psa genome.
Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker of kiwifruit with heavy economic losses. However, little is known about the pathogenic genes of Psa. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas-mediated genome editing technology has dramatically facilitated the characterization of gene function in various organisms. However, CRISPR genome editing could not be efficiently employed in Psa due to lacking homologous recombination repair. The base editor (BE) system, which depends on CRISPR/Cas, directly induces single nucleoside C to T without homology recombination repair. Here, we used dCas9-BE3 and dCas12a-BE3 systems to create substitutions of C to T and to convert CAG/CAA/CGA codons to stop codons (TAG/TAA/TGA) in Psa. The dCas9-BE3 system-induced single C-to-T conversion frequency of 3 to 10 base positions ranged from 0% to 100%, with a mean of 77%. The dCas12a-BE3 system-induced single C-to-T conversion frequency of 8 to 14 base positions in the spacer region ranged from 0% to 100%, with a mean of 76%. In addition, a relatively saturated Psa gene knockout system covering more than 95% of genes was developed based on dCas9-BE3 and dCas12a-BE3, which could knock out two or three genes at the same time in the Psa genome. We also found that hopF2 and hopAO2 were involved in the Psa virulence of kiwifruit. The HopF2 effector can potentially interact with proteins such as RIN, MKK5, and BAK1, while the HopAO2 effector can potentially interact with the EFR protein to reduce the host's immune response. In conclusion, for the first time, we established a PSA.AH.01 gene knockout library that may promote research on elucidating the gene function and pathogenesis of Psa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available